
String Matching

String matching problems occur throughout computing - everything from mundane (but essential) 

utilities such as find-and-replace operations in word processors to literary analysis (how many 

times does Shakespeare use the word "eyebrow") to genetic research to internet search engines ... 

they all rest on searching for one string of characters (a pattern) inside another string of characters 

(a target).  The naive algorithm can take a long time, but we will see that we can improve on it 

quite a bit.

Notation:  Let T be the target string, with length n.   The positions in T are indexed with 1 .. n

                Let P be the pattern string, with length m.   The positions in P are indexed with 1 .. m

                Shift i corresponds to writing P below T so that P[1] aligns with T[1 + i].  We say that 

there is a match at shift i if P[1] = T[1+i], P[2] = T[2+i], .... P[m] = T[m+i]

Task:  Given T and P, find all values of i such that there is a match at shift i

Brute Force and Ignorance Algorithm

for i =  0 .. n - m : # i is the shift
match = True
for j = 1 to m:
   if P[j] != T[i+j]:

match = False
break

if match:
        print "Match found at shift ",i

This algorithm is obviously correct since it tests every possible shift.    Its running time is clearly in 

O((n-m+1)*m), since each comparison of P with a substring of T takes O(m) time.

The worst-case is easily achieved :  if T = “xxxxxx .... x”   (ie every character in T is identical) and    

P = “xxxxy”  then testing each shift will require m comparisons. 



Rabin-Karp Algorithm

The Rabin-Karp algorithm is based on trying to eliminate the inner loop of the BFI algorithm, 

which takes O(m) time to test each shift.  Rabin-Karp reduces this to O(1) to test each shift by using

integer comparisons instead of string comparisons.

To do this, the search string P and each m-character substring of T must be converted to integers.

As an ongoing example domain for this unit we will look at DNA sequences ... all of which are 

composed of four basic building blocks commonly referred to by their initials:  A, C, G, T.   We will

suppose that T is a large DNA sequence and P is a smaller one – we want to find all the 

occurrences of P in T.

In this domain it is very easy to convert P to an integer.  We can assign different single digit 

integers to the four letters in our alphabet and just string them together.   (When dealing with a 

larger character set we might choose to use the ASCII ordinal numbers of the characters.)

For example we can create a function that maps the letters onto digits like this:

x f(x)

A 1

C 2

G 3

T 4

Converting P to an integer looks like this:

which is most efficiently computed using Horner’s Rule:

def HR(P):
IP = f(P[1])
for j = 2 .. m:

IP = IP*10 + f(P[j])
return IP

Horner’s Rule computes IP in O(m) time



Suppose T = “ACTTGGACTTATCTTGAG”  and P = “CTTG”

Converting P to an integer using the method just shown gives IP = 2443.  Clearly different values of

P will give different values of IP.

For T, we need to convert each substring of length m into an integer.  We can do that for each 

substring just before we see if it matches P

Our revised BFI algorithm would now look like this:

IP = HR(P)
for i =  0 .. n - m : # i is the shift

X = HR(T[i .. i+m]) # taking a slice of T a la Python
if IP == X:

        print "Match found at shift ",i

This looks good – the inner loop is gone and since integer comparisons take constant time we seem

to have acheived our goal.  But looks can be deceiving!  Each call to HR() takes O(m) time so we 

have really just replaced one O(m) loop with another and the complexity has not changed.

This is where Rabin and Karp start to show why they are famous!  We can actually compute almost

all the integers for substrings of T in O(1) time for each.

Here’s the idea.  Consider the integer we get for the first shift (i = 0)  in the example above:  

HR(“ACTT”) = 1244 .  Now consider the integer for the second shift:  HR(“CTTG”) = 2443.  For the 

third shift it is HR(“TTGG”) = 4433.   Each one is derived from the previous one by 

• deleting the first digit

• shifting the remaining digits one column left 

• adding the digit for the next letter in T

To delete the first digit, we just subtract that digit (which we get by converting the appropriate 

letter of T) multiplied by the appropriate power of 10 ... which a moment’s thought shows is 

To shift the remainder one column left we just multiply it by 10

To add the digit for the next letter we just add it

These operations all take constant time ... so we can get the next integer we need in  time

To save time, we pre-compute  .  If we want to be super-efficient we can do this in 

time using a divide and conquer algorithm, but because we’re only doing it once we can just use 

the obvious  method.   I’ll call this value E.



So here’s the algorithm to convert the integer for shift i to the integer for shift i+1:

# let X be the integer for shift i
X = (X-f(T[i+1])*E)*10 + f(T[i+m+1])
# X is now the integer for shift i+1

To do a quick check that all the index values in that expression are correct, let i = 0.  In this case X 

represents the substring T[1 ... m] before the operation, and the substring T[2 ... m+1] after.

Plugging these changes into our algorithm we get

IP = HR(P)
E = 10^(m-1)
X = HR(T[1.. m])
for i =  0 .. n - m - 1: # i is the shift – notice we don’t

# include the last shift here
if IP == X:

        print "Match found at shift ",i
# compute the integer for the next shift
X = (X-f(T[i+1])*E)*10 + f(T[i+m+1])

if IP == X:
print “Match found at shift “,n-m

(Point of interest – why don’t we handle the test for the last shift inside the loop?)

The first three steps are all in  .  The loop executes  times and each iteration takes 

constant time.  The last step takes  time.   Assuming n is much larger than m (which is 

virtually always the case) these combine to give  time for the algorithm.

Mission Accomplished!

Except ... for ... one ... thing:

This algorithm’s claim of fast running time is built around the idea that we can compare integers in

constant time.  That is actually true ONLY if the integers are  whatever the maximum allowable 

integer happens to be in our computing environment.  In Java for example, int variables must be

 and long integers must be   .    So in Java 

there is no (native) way to represent a 20 digit integer, but if   then IP will have   

digits.  We can use a class such as BigInteger but this loses the constant time comparison operation.

This is where Rabin and Karp prove once again that they are pretty darn smart.  They realized that 

we can side-step the excessively large integer problem by doing all the arithmetic mod q, where q 

is a prime number of suitable size (see below).  



So our Horner’s Rule method becomes

def HR(P):
IP = f(P[1])
for j = 2 .. m:

IP = (IP*10 + f(P[j]))  mod q
return IP

and our string matching algorithm becomes

IP = HR(P)
E = 10^(m-1) mod q
X = HR(T[1.. m])
for i =  0 .. n - m - 1: # i is the shift – notice we don’t

# include the last shift here
if IP == X:

        print "Match found at shift ",i
# compute the integer for the next shift
X = (((X-f(T[i+1])*E mod q)*10 ) mod q + f(T[i+m+1]) ) mod q

if IP == X:
print “Match found at shift “,n-m

This keeps all the integers small enough that we can complete the arithmetic operations in O(1) 

time, but it introduces a new problem:  when we compare IP to X , we may get equality even 

though the strings don’t actually match. This is because when we do our arithmetic  there 

are only  possible values.  It is entirely possible that the integers for P and some substring of T will

be congruent  even if they are different – our algorithm will report this as a match.   This 

means that whenever we get a potential match, we must check it in detail.  The algorithm now 

looks like this:



IP = HR(P)
E = 10^(m-1) mod q
X = HR(T[1.. m])
for i =  0 .. n - m - 1: # i is the shift – notice we don’t

# include the last shift here
if IP == X:
   match = True # check for valid match
   for j = 1 .. m:
   if P[j] != T[i+j]:

match = False
break

   if match:
  print "Match found at shift ",i
# compute the integer for the next shift
X = (((X-f(T[i+1])*E mod q)*10 ) mod q + f(T[i+m+1]) ) mod q

if IP == X:
match = True # check for valid match
for j = 1 .. m:

if P[j] != T[n – m + j] :
match = False
break

if match:
print “Match found at shift “,n-m

You will perhaps be relieved to know that this is our final form of the Rabin-Karp algorithm – but 

we need to examine its running time.

To do this I’m going to introduce the term “might-match” to describe a shift where IP == X  - ie a 

shift for which we have to do the character-by-character comparison to confirm or reject the match.

Some of the might-matches are valid matches, and the rest are false positives.

Clearly if every shift is a might-match, this algorithm has exactly the same complexity as the BFI 

algorithm.  However we can argue that the number of might-matches is probably much smaller 

than this.

Let  be the number of valid matches - ie the number of times P actually occurs in T.  Clearly the 

number of might-matches is   .

With some amount of hand-waving about getting a uniform distribution of remainders when we 

divide random integers by q , we can claim that the probability of each X equalling IP is  .  Since 

there are no more than n shifts, the expected number of false positives is   .

Combining these, we can claim that the expected number of might-matches is  



Since the loop executes O(n) times, and each might-match takes O(m) time to verify, we can see 

that the expected running time for the loop is in  

Now if   (which is not usually a challenge -  is the length of P, and even if P is thousands 

of characters long we have a good selection of primes to choose from),  this reduces to

Furthermore, it is not unreasonable to assume that  is likely to be small, possibly even in  .  If 

so,  is in , and since , the whole algorithm has running time in 

Thus under some reasonable assumptions, Rabin-Karp has expected running time in 


